Asymmetric dimethylarginine downregulates sarco/endoplasmic reticulum calcium-ATPase 3 and induces endoplasmic reticulum stress in human umbilical vein endothelial cells

نویسندگان

  • Weikang Guo
  • Zongli Diao
  • Wenhu Liu
چکیده

Cardiovascular disease is the leading cause of mortality in patients with chronic kidney disease. Endothelial cell injury and apoptosis may promote atherosclerosis and cardiovascular disease. The present study investigated the potential mechanisms of asymmetric dimethylarginine (ADMA)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). It was demonstrated that ADMA decreased B‑cell lymphoma‑2 expression and increased cleaved‑caspase‑3 expression. Furthermore, terminal deoxynucleotidyl transferase (TdT)‑mediated‑digoxigenin‑11‑dUTP nick end labeling results indicated that ADMA induced apoptosis in HUVECs. These results suggest a potential mechanism of ADMA‑induced endothelial cell injury. It was also verified that ADMA induced the expression of phosphorylated protein kinase RNA‑like ER kinase, inositol requiring enzyme‑1, C/EBP homologous protein and glucose‑regulated protein, indicating activation of the endoplasmic reticulum (ER) stress response. Impaired function of sarco/endoplasmic reticulum calcium‑ATPase (SERCA) is considered a major contributor to ER stress. It was demonstrated that ADMA induced a significant downregulation of SERCA3, however not SERCA2b. Overall, the results indicated that ADMA induced apoptosis in HUVECs, and that this effect was closely associated with induction of ER stress and decreased SERCA3 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activated Protein C Induces Endoplasmic Reticulum Stress and Attenuates Lipopolysaccharide-Induced Apoptosis Mediated by Glycogen Synthase Kinase-3β

This study investigated the relationship between antiapoptotic activities induced by activated protein C and endoplasmic reticulum stress. In this study, it was observed that activated protein C elicited a rise in glucose-regulated protein 78 and glycogen synthase kinase-3β and inhibited apoptosis in human umbilical vein endothelial cells induced by lipopolysaccharide. Calcium inhibition did no...

متن کامل

Asymmetric Dimethylarginine Induced Apoptosis and Dysfunction of Endothelial Progenitor Cells: Role of Endoplasmic Reticulum Stress Pathway

Asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase, is a novel risk factor of cardiovascular disease. Endothelial progenitor cells (EPCs) bear typical endothelial characteristics and are thought to contribute to neovascularization by providing new endothelial cells (ECs) after arterial injury. Many studies have shown that ADMA can induce EPC apoptosis and dysfunction, but...

متن کامل

Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response.

Severe hyperhomocysteinemia is associated with endothelial cell injury that may contribute to an increased incidence of thromboembolic disease. In this study, homocysteine induced programmed cell death in human umbilical vein endothelial cells as measured by TdT-mediated dUTP nick end labeling assay, DNA ladder formation, induction of caspase 3-like activity, and cleavage of procaspase 3. Homoc...

متن کامل

Homocysteine Induces Apoptosis of Human Umbilical Vein Endothelial Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017